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We examine a one-dimensional class of interacting particle systems which 
generalize some voter models. This class includes a particular case in the class 
of models of catalytic surfaces introduced by Swindle and Grannan. We show 
that this class has the "clustering" property of ordinary finite-range voter 
models, at least when one is concerned with translation-invariant measures on 
the state space. 
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I N T R O D U C T I O N  

In this note  we cons ider  a class of one-d imens iona l  par t ic le  systems that  
share proper t ies  of the f ini te-range voter  model.  We prove tha t  this class 
canno t  have nont r iv ia l  s t a t ionary  measures  which are t rans la t ion  invariant .  
Of  course more  is known  a b o u t  the voter  models  themselves,  but  in our  
more  general  context  we are unable  to find a nice duali ty.  The class of 
par t ic le  systems includes the cri t ical  one-d imens iona l  ca ta ly t ic  surface 
cons idered  by G r a n n a n  and  Swindle. (4) I t  was this pape r  that  mo t iva t ed  

this note.  
The voter  mode l  with finite range has flip rates 

c(x, q ) = ~  p(x,  y ) I ( , ( x ) e , ( y~  
Y 

where p ( . ,  .) represents  the t rans i t ion  probabi l i t i es  of a r a n d o m  walk with 
b o u n d e d  jumps .  O u r  general iz ing processes are defined by the fol lowing 
proper t ies :  
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1. "Discrete,  bounded"  state space: The  state space will be of the 
form D z for D some finite subset of R. 

2. Finite range: Let c(x, k, tl) denote  the rate at which t/ flips to 
q(x, k), where 

tl(X, k ) (y)  = r/(y) if y r x; tl(x, k)(x)  = k 

Then 

c(x, k, t l) = f ( t l (x  - K), tl(x - K + 1 ),..., rl(x + K)) 

for some K and function f rom D 2~c+ 1 ~ R, both  not  depending on x. 

3. Mart ingale:  Deno te  the expected size of a flip at site x by 

e(x, q ) =  ~ c(x, k, t l ) [ k - r l ( x ) ]  
k s D  

There  exists an absolute  constant  for the system, M, so that  for any n, q 

tx~<~ e(x, tl) <~M 

Equivalently,  

lls II ~ < M Vn 

where f , (q )  = 27= , it(i). 

4. Active: Let D = { r l < r 2 <  . . . < r , } .  If r / ( x ) = r j  with l < j < n ,  
then 

~ c (y ,k ,  t l)>O 
l y - -x l<~K k ~ D  

Also if {t/(x), t/(x+ 1)} or {t/(x), t / (x -  1)} = {rl, r.}, then 

E y, c ( y , k , t ] ) > O  
lY xl<~K k ~ D  

Here  K is as in p roper ty  2. 

P roper ty  3 is the p roper ty  that  we use most.  It ensures that  if 
{t/,: t~>0} is a generalized voter  model,  then Zlxl.<, q,(x) is a mart ingale  
plus some edge effects that  become negligible as n becomes large. 

We will p rove  the following result. 
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Theorem. For  a generalized voter model  the only s tat ionary 
measures which are translation invariant are those which consist of point  
masses at the configurations of all rl or all rn. 

R e m a r k .  In this paper  we will consider the point  masses at all r I or 
all r n and their convex combinat ions  to be trivial measures. Condi t ion 4 
ensures that these are the only traps. 

An immediate consequence of  the Theorem follows: 

C o r o l l a r y .  Consider  a G V M  with translat ion-invariant  starting 
measure v. The Cesaro means ( l / T ) ~ r P ~ v  ds converge in distribution to 
~ + (1 - ~) CSrn, where c~r 1 + ( 1  -- ~ ) r , ,=  EV[t/(0)]. 

G r a n n a n  and Swindle/4) consider a class of  processes on X, the subset 
of { - 1 ,  0, 1} z~ consisting of configurations with no neighboring sites 
having opposite values. In one dimension these processes have flip rates 
given as follows. 

If  r / (x)=  1: 

c(x, - 1, r / ) = 0  

c(x, O , q ) = ( 1 - - p ) ( I . ( x _ l ) _ o ( l  + I~( x 2 ) r  

If q ( x ) =  -- 1: 

c(x, 1, ~t) = 0 

c(x,O, tl)=p(I.(x 1)=o(l+I~(x-2)e 1)+I . (x+l )=o( l  +l . (x+2)e  1)) 

If  q(x) = 0: 

c(x, 1, t / )=pI ,~x_l ) , , (~+l)~  1, c(x, - 1 ,  t / )=  ( 1 - p ) I ~ ( x _ l ) , ~ ( ~ + ~  1 

It was shown that  if the parameter  p is not  equal to �89 then the only 
s tat ionary measures are the trivial measures. Our  result shows that in the 
case p = �89 the only translat ion-invariant  s tat ionary measures are trivial. 

In Section 1 we show that  f ,01,)  can be written as a martingale plus 
a term which changes with a bounded  rate, not  depending on n. Second we 
show that if a nontrivial invariant measure/~ exists, then we may assume 
without  loss of  generality that there is a c ~ (r~, rN) SO that  

o l im = (,) 

In Section 2 we complete our  p roof  with an argument  by contra-  
diction. We show that  for any translation-invariant,  s tat ionary measure 
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satisfying (,) ,  there is "too much life" in the martingale part of f ,  for (*) 
to hold at all subsequent times. 

1. We assemble some preliminary observations. Since our state space 
is D z, where D = {rl < r2 < - "  < r,}, every possible jump in the value of 
qt(x) as t varies lies in the finite set J={r i - r j ,  l<~i,j<~n, ir  We 
define Jmin to be min{[j]:jEJ} and Jmax to be max{[j[:jeJ} (~<rn- r l ) .  

Recall that ZT= - ,  t/(i)=f~(t/). 

k e m m a  1.1. The jump process 

N 

fu(r/t) = 2 tl,(J) 
j = - - N  

can be decomposed as three jump processes: 

fN( s)- fN(,o) = :C  + + 

where all processes on the right-hand side are initially zero and (1) Ys N is 
a martingale with respect to the natural filtration of the GVM Y/s. It does 
not share any jumps with the processes Z N and wN; (2) Z N is equal to Jmax 
times a Poisson process running at rate M/jmin ; and (3) - W N is increasing 
and stochastically tess than Jmax times a Poisson process of intensity 

2M/jmin. 

Proof. Let J =  {Jl,J2 ..... jp}. At time s the rate at which fN(q,) 
makes a jump of size Jr equals d(~/,, r) for some measurable set of functions 
d(-, r). Property 3 of GVMs requires that 

~-1 d(~ls, r)jr < M 

From this we see easily that the p-vector (d(t/ ,  1), d(t/~, 2) ..... d(t/~, p)) can 
be written as R~ + R ~  where 

(a) 2~=~ (RY)rJp =0 
(b) [ Z P = ~ R ~ 1 7 6  

We now take yN to be the jump process corresponding to jump rate R~ r. 
It is obvious that fN(q~)--fN(qo)--Y N can be decomposed into 

I 

R e m a r k .  We can and wilt suppose that the jump rates of yN are 
measurable functions of Vs. 
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Let S x denote the set of translation-invariant probability measures on 
D z such that 

n 

#-a.s. nlirr)'~ 2n, E= -n t / ( i )=x  

The proof given below is due to Tom Liggett and replaces the longer 
and clumsier original. 

P r o p o s i t i o n  1.2. If there exists a nontrivial stationary, translation- 
invariant probability measure /~, then for some x e ( r l ,  r~) there exists a 
stationary v in Sx. 

Proof. Let # be a nontrivial stationary probability measure which is 
translation invariant. The translation invariance ensures (see, e.g., ref. 7) 
that 

#-a.s. ,,~limco 1 fn(rl) = G(q) exists 

and that 

I~ = Iii" dz(x)v  ~ (*) 

where Z is some probability measure and vXe Sx for each x. The measures 
v x can be thought of as conditional distributions of ~/ given G(r/). Since 1~ 
is nontrivial, the probability measure X must put positive mass on (r 1, rn). 

From the basic properties of operators of Markov processes (see, e.g., 
ref. 6, p. 16), 

P,fN(tl)  -- fN(rl) = f~ P,([2(fN(t/))) ds 

Property 3 defining generalized voter models ensures that II~(fN)It~ ~<M 
and so IIP, NN--fN II ~ ~< Mt. Therefore 

1 1 2 

1 2 

I 1  /fu(r/) pfN(r/) '~] Kt 
+2E~ 5-9fN(~1\59- -  , 5 - U j j ~ 7  

822/67/1-2-20 
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for some K not depending on N. (Since/~ is stationary, the first two terms 
on the right-hand side vanish.) Letting N tend to infinity, we deduce that 
#-a.s. G(~/)= G(q,) for all t. From this fact it is standard to deduce that for 
z-a.a, x, p , v x=  v x. Therefore, by Fubini's theorem, for z-a.a, x, PtvX= v x 
for Lebesgue almost all positive t. Our processes have bounded flip rates, 
so this entails that for z-a.a, x, PtvX= v x for all t. 

As Z is not concentrated on the points {rl, rn} , this proves the 
proposition. | 

2. In this section we argue that there can be no nontrivial invariant 
measures for a GVM process. As mentioned in the Introduction, we 
assume the converse. We may assume that there exists a measure as in 
Proposition 1.2. We argue that the martingale square bracket process 
( yU} must be of order tN and that therefore, by the martingale central 
limit theorem, there will be a nontrivial chance that YN N will be of order 
,,/-~N. If s is chosen correctly, then, we show, this discrepancy cannot 
be balanced by W N N - ~ - z N  u and so (1/2N) fu(qsU) will differ from 
(1/2N) fu(rlo) significantly. This is the desired contradiction. 

We begin this section by assuming the falsity of the Theorem, which 
is to say that we assume the existence of a nontrivial translation-invariant, 
stationary measure. As has already been stated, Proposition 1.2 enables us 
to argue that if there were such a measure, then there would have to be an 
invariant measure p in S x for some x ~ (rl, r,). Let c(r) equal 

. f c(O, ri, rl)I{n(o)=rk}v(drl) 
ri rk = Jr 

By Birkhoff's ergodic theorem, 

1 N p 

, l im g--~ x~,~z~v =Z N beDS' c(x' h' q ) [h - r l ( x )  ]2= ~=l ~ c(r)(jr)2=k(rl) 

for v almost all r/. The defining properties of GVMs force this limit to be 
strictly positive. It should be noted that we cannot suppose that this limit 
is necessarily constant, however, since the extreme points of the set of 
stationary, translation-invariant measures need not be ergodic. See ref. 1 
for a nice counterexample. Therefore, for given 6 > 0, we can find k > 0 so 
that for N large enough and all t, 

P ~ L J o ~  ~.~Nh~DC(X,h, r l , )(h--qs(X))2ds<kt <6 (A) 

We will use the decomposition of Lemma 1.1: 

fN(.s)  -- fu(~o) = Y? + Z ?  + W?  
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The 1emma below follows simply from Theorem 3.2 of Hall and Heyde 
(ref. 5, p. 52). 

kemrna  2.1. For any v, define the stopping time 

S(v) = inf{s: ( YN} s > V} 

where (YN}s is the square bracket process for the martingale Y~'. Then 

N 

Ys(~) D N(0, 1) 
,/7 

as v tends to infinity. 

Consider the compensator of the process (YN}. This is equal to a 
process ~=o  wN du, where 

N 
N .2  l/l/u-- 2 Z C(X'V'tl.)[V--tl.(X)] 2 <Mjma• 

x ~  - - N  v ~ D  

Consequently, given inequality (A), for given 6 > 0, we can find k > 0  so 
that for N large enough 

E v ~ W  u d u < k t  <3 Vt 

From this and from the strong law of the large numbers property of the 
simple Poisson process it follows that for t positive and bounded away 
from O, 

I( W d.I 
o W,  du 

tends to zero as N tends to infinity. Thus, there is a ko so that for any t ~> 1, 

P~[(  Y N } ( k o t N  ] < �89 (B) 

We now choose and fix 7 and e ~ 1 so that 

(1) ~2"/~ 1/(2~)1/2e x2/2dx>~ 

(2) e((M + 1 )(r, - r 1)/jmi.) < (7/16)(koe) m < (r, - rl)/16 

i . e mma  2.2. Define the stopping time T=inf{t:  y u <  _ N.y(koe)~/2}. 
The probability that T is less than aN exceeds �89 for all N large enough. 

Proo[. Lemma 2.1 ensures that as N tends to infinity, 

YS( koeN  2) 

(koeN2) 1/2 
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tends to a standard normal in distribution. Our choice of 7 and inequality 
B ensure that for N large enough 

P [  ](S(k0eN 2) < -- Ny(ko~) 1/2] > 2 

which certainly implies that P[T<~S(koeN2)] > 2. But our choice of k o 
implies that P[S(koeN 2) ~< Ne] > 4. The lemma follows. | 

The lemma below follows from general theory (see, e.g., ref. 3). 

k e m m a  2.3. Let V t be a continuous-time martingale whose jumps 
are bounded by 3. If a < c < b and Vo < c, then 

b - c  
P[inf{t:  V,<<.a} <inf{t:  V,>~b}] >>'b+f~-a 

Proof of  Theorem. We apply Lemma 2.3 to the martingale yN+, 
conditioned on the event T<~eN, taking a to equal - 4 N ( r n - r ~ ) ,  b to 
equal - N 7 2 ( k o e )  ~/2, and c to equal -NT(koe)  ~/2. We conclude that with 
probability greater than 

1 17(ko8)1/2 

4(rn - rl) + Jmax/N- �89 1/2 

either yNN < -- N(7/2 )(koe) 1/2 or, for some s <<, N~, yU < _ 4 N ( r n _  rl). We 
will secure the desired contradiction by showing that unlike the probability 
in question, both these later events have a probability which tends to zero 
as N tends to infinity. 

First consider the event { yNN< -N (7 /2 ) ( k oe )m} .  By the decomposi- 
tion of Lemma 1.1, however, on this event either 

fu(~NA-- fu("o) yXN~ ZNN~, 
( i )  N ~<---N + --~-- ~< - -  e 

or  

mjlnax (ii) N > _ _  Z N~ ,i 2Ne 
Jmin 

The first event has probability tending to zero as N tends to infinity, since 
with respect to Pv, fN(tlo)/N [and therefore fu(rlu~)/N, since v is invariant] 
tends to 2x in probability as N tends to infinity. That the probability of the 
second event goes to zero is a simple consequence of the law of large 
numbers. 
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N o w  consider the event {for some s ~< Ne, Ys ~ < - 4 N ( r , - r l ) } .  Since 
f U ( q s ) - - f u ( t l O ) > ~ - - ( 2 N + l ) ( r n - - r l ) ,  and W x is negative, the event in 
question can only occur if Z NN >~ (2N- -  1)(r, -- r l ) >~ Ne( 2 M  + 1 ) Jmax/jrnin 
for N large enough. Again the law of large numbers  ensures that this has 
probabil i ty tending to zero as N tends to infinity. 
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